Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Blood Purif ; 53(5): 379-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219716

RESUMEN

INTRODUCTION: Novel hemoperfusion systems are emerging for the treatment of sepsis. These devices can directly remove pathogens, pathogen-associated molecular patterns, cytokines, and other inflammatory markers from circulation. However, significant safety concerns such as potential antibiotic clearance need to be addressed prior to these devices being used in large clinical studies. METHODS: Prospective, observational study of 34 participants undergoing treatment with the Seraph 100® Microbind Affinity Blood Filter (Seraph 100) device at 6 participating sites in the USA. Patients were included for analysis if they had a record of receiving an antibiotic concurrent with Seraph 100 treatment. Patients were excluded if there was missing information for blood flow rate. Blood samples were drawn pre- and post-filter at 1 h and 4 h after treatment initiation. These average pre- and post-filter time-concentration observations were then used to estimate antibiotic clearance in L/h (CLSeraph) due to the Seraph 100 device. RESULTS: Of the 34 participants in the study, 17 met inclusion and exclusion criteria for the antibiotic analysis. Data were obtained for 7 antibiotics (azithromycin, cefazolin, cefepime, ceftriaxone, linezolid, piperacillin, and vancomycin) and one beta-lactamase inhibitor. Mean CLSeraph for the antibiotics investigated ranged from -0.57 to 0.47 L/h. No antibiotic had a CLSeraph statistically significant from 0. DISCUSSION/CONCLUSION: The Seraph 100 did not significantly clear any measured antibiotic in clinical samples. These data give further evidence to suggest that these therapies may be safely administered to critically ill patients and will not impact concentrations of administered antibiotics.


Asunto(s)
Antibacterianos , Piperacilina , Humanos , Antibacterianos/uso terapéutico , Estudios Prospectivos , Piperacilina/uso terapéutico , Linezolid , Cefepima
2.
Blood ; 142(3): 217-219, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37471109
4.
Front Immunol ; 14: 1128641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936969

RESUMEN

Background: Almost half of severe hemophilia A (HA) is caused by an intron 22 inversion mutation (Int22Inv), which disrupts the 26-exon F8 gene. Inverted F8 mRNA exons 1-22 are transcribed, while F8B mRNA, containing F8 exons 23-26, is transcribed from a promoter within intron 22. Neither FVIII activity nor FVIII antigen (cross-reacting material, CRM) are detectable in plasma of patients with an intron-22 inversion. Objectives: To test the hypothesis that (putative) intracellular synthesis of FVIII proteins encoded by inverted F8 and F8B mRNAs confers T-cell tolerance to almost the entire FVIII sequence, and to evaluate the immunogenicity of the region encoded by the F8 exon 22-23 junction sequence. Patients/Methods: Peripheral blood mononuclear cells (PBMCs) from 30 severe or moderate HA subjects (17 with an Int22Inv mutation) were tested by ELISPOT assays to detect cytokine secretion in response to FVIII proteins and peptides and to map immunodominant T-cell epitopes. Potential immunogenicity of FVIII sequences encoded by the F8 exon 22-23 junction region was also tested using peptide-MHCII binding assays. Results: Eight of the Int22Inv subjects showed robust cytokine secretion from PBMCs stimulated with FVIII proteins and/or peptides, consistent with earlier publications from the Conti-Fine group. Peptide ELISPOT assays identified immunogenic regions of FVIII. Specificity for sequences encoded within F8 mRNA exons 1-22 and F8B mRNA was confirmed by staining Int22Inv CD4+ T cells with peptide-loaded HLA-Class II tetramers. FVIII peptides spanning the F8 exon 22-23 junction (encoding M2124-V2125) showed limited binding to MHCII proteins and low immunogenicity, with cytokine secretion from only one Int22Inv subject. Conclusions: PBMCs from multiple subjects with an Int22Inv mutation, with and without a current FVIII inhibitor, responded to FVIII epitopes. Furthermore, the FVIII region encoded by the exon 22-23 junction sequence was not remarkably immunoreactive and is therefore unlikely to contain an immunodominant, promiscuous CD4+ T-cell epitope. Our results indicate that putative intracellular expression of partial FVIII proteins does not confer T-cell tolerance to FVIII regions encoded by inverted F8 mRNA or F8B mRNA.


Asunto(s)
Hemofilia A , Humanos , Factor VIII , Intrones/genética , Leucocitos Mononucleares , Mutación , Péptidos/genética , Epítopos de Linfocito T/genética , Inversión Cromosómica , Linfocitos T CD4-Positivos , ARN Mensajero/genética , Citocinas/genética
5.
J Thromb Haemost ; 21(4): 800-813, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696179

RESUMEN

BACKGROUND: Several studies have suggested Black and Hispanic hemophilia A (HA) patients in the United States suffer higher incidences of neutralizing anti-FVIII antibodies (inhibitors) than their White counterparts. The possible influence of nonsynonymous single-nucleotide polymorphisms (ns-SNPs) in the F8 gene sequence has been proposed as a possible race-associated contributing factor. Some earlier studies indicated that intron-22 inversion mutations carry a lower inhibitor risk than other mutations resulting in large F8 gene disruptions. OBJECTIVES: The objectives of the study were to test the following hypotheses: (1) The risk of developing an inhibitor differs among racial/ethnic groups in the United States, (2) specific non-HA-causing ns-SNPs in the F8 gene are correlated with inhibitor risk, and (3) inhibitor risk associated with intron-22 inversions mutations is similar to that associated with other large structural changes in the F8 gene. METHODS: Adjusted logistic regression analysis of the "My Life Our Future" database containing demographic, clinical, and F8 sequence data from >6000 mild, moderate, and severe HA participants. RESULTS: Black and Hispanic severe HA subjects had a higher inhibitor risk than non-Hispanic Whites (adjusted odds ratio = 1.65, 95% CI: 1.22-2.21 and adjusted odds ratio = 1.88, 95% CI: 1.43-2.48), confirming this racial/ethnic/medical disparity; however, F8 ns-SNPs were not associated with inhibitor development. There was no difference in inhibitor risk among severe HA subjects with an intron-22 inversion vs other large structural changes in the F8 gene. CONCLUSIONS: Nonpathogenic ns-SNPs in the F8 gene are not correlated with inhibitor risk. Inhibitor risk associated with intron-22 inversion mutations is similar to that of other large structural changes in F8 that preclude intact FVIII expression.


Asunto(s)
Hemofilia A , Humanos , Hemofilia A/diagnóstico , Hemofilia A/genética , Etnicidad , Factor VIII/genética , Mutación , Intrones
6.
Blood Adv ; 7(17): 4983-4998, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459498

RESUMEN

The most common complication in hemophilia A (HA) treatment, affecting 25% to 30% of patients with severe HA, is the development of alloimmune inhibitors that foreclose the ability of infused factor VIII (FVIII) to participate in coagulation. Inhibitors confer significant pathology on affected individuals and present major complexities in their management. Inhibitors are more common in African American patients, and it has been hypothesized that this is a consequence of haplotype (H)-treatment product mismatch. F8 haplotypes H1 to H5 are defined by nonsynonymous single-nucleotide polymorphisms encoding sequence variations at FVIII residues 1241, 2238, and 484. Haplotypes H2 to H5 are more prevalent in individuals with Black African ancestry, whereas 80% to 90% of the White population has the H1 haplotype. This study used an established multiplex fluorescence immunoassay to determine anti-FVIII antibody titers in plasma from 394 individuals with HA (188 Black, 206 White), measuring their binding to recombinant full-length H1 and H2 and B-domain-deleted (BDD) H1/H2, H3/H5, and H4 FVIII proteins. Inhibitor titers were determined using a chromogenic assay and linear B-cell epitopes characterized using peptide microarrays. FVIII-reactive antibodies were readily detected in most individuals with HA, with higher titers in those with a current inhibitor, as expected. Neither total nor inhibitory antibody titers correlated with F8 haplotype mismatches, and peptides with D1241E and M2238V polymorphisms did not comprise linear B-cell epitopes. Interestingly, compared with the full-length FVIII products, the BDD-FVIII proteins were markedly more reactive with plasma antibodies. The stronger immunoreactivity of BDD-FVIII suggests that B-domain removal might expose novel B-cell epitopes, perhaps through conformational rearrangements of FVIII domains.


Asunto(s)
Hemofilia A , Hemostáticos , Humanos , Factor VIII/metabolismo , Haplotipos , Epítopos de Linfocito B , Blanco , Anticuerpos
7.
Crit Care Explor ; 4(4): e0662, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35506015

RESUMEN

The Seraph100 Microbind Affinity Blood Filter (Seraph 100) (ExThera Medical, Martinez, CA) is an extracorporeal therapy that can remove pathogens from blood, including severe acute respiratory syndrome coronavirus 2. The aim of this study was to evaluate safety and efficacy of Seraph 100 treatment for COVID-19. DESIGN: Retrospective cohort study. SETTING: Nine participating ICUs. PATIENTS: COVID-19 patients treated with Seraph 100 (n = 53) and control patients matched by study site (n = 53). INTERVENTION: Treatment with Seraph 100. MEASUREMENTS AND MAIN RESULTS: At baseline, there were no differences between the groups in terms of sex, race/ethnicity, body mass index, and need for mechanical ventilation. However, patients in the Seraph 100 group were younger (median age, 54 yr; interquartile range [IQR], 41-65) compared with controls (median age, 64 yr; IQR, 56-69; p = 0.009). Charlson comorbidity index scores were lower in the Seraph 100 group (2; IQR, 0-3) compared with the control group (3; IQR, 2-4; p = 0.006). Acute Physiology and Chronic Health Evaluation II scores were also lower in Seraph 100 subjects (12; IQR, 9-17) compared with controls (16; IQR, 12-21; p = 0.011). The Seraph 100 group had higher vasopressor-free days with an incidence rate ratio of 1.30 on univariate analysis. This difference was not significant after adjustment. Seraph 100-treated subjects were less likely to die compared with controls (32.1% vs 64.2%; p = 0.001), a difference that remained significant after adjustment. However, no difference in mortality was observed in a post hoc analysis utilizing an external control group. In the full cohort of 86 treated patients, there were 177 total treatments, in which only three serious adverse events were recorded. CONCLUSIONS: Although this study did not demonstrate consistently significant clinical benefit across all endpoints and comparisons, the findings suggest that broad spectrum, pathogen agnostic, blood purification can be safely deployed to meet new pathogen threats while awaiting targeted therapies and vaccines.

8.
Hum Vaccin Immunother ; 18(5): 2048622, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-35348437

RESUMEN

We report a Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2 RγcKO.NOD) for COVID-19 research. DRAGA mice express transgenically HLA-class I and class-II molecules in the mouse thymus to promote human T cell development and human B cell Ig-class switching. When infused with human hematopoietic stem cells from cord blood reconstitute a functional human immune system, as well as human epi/endothelial cells in lung and upper respiratory airways expressing the human ACE2 receptor for SARS-CoV-2. The DRAGA mice were able to sustain SARS-CoV-2 infection for at least 25 days. Infected mice showed replicating virus in the lungs, deteriorating clinical condition, and human-like lung immunopathology including human lymphocyte infiltrates, microthrombi and pulmonary sequelae. Among the intra-alveolar and peri-bronchiolar lymphocyte infiltrates, human lung-resident (CD103+) CD8+ and CD4+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, suggesting anti-viral cytotoxic activity. Infected mice also mounted human IgG antibody responses to SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathological mechanisms and testing the safety and efficacy of candidate vaccines and therapeutics.


Asunto(s)
COVID-19 , Antígeno HLA-DR4 , Animales , Linfocitos B , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Células Endoteliales , Antígeno HLA-A2/genética , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , SARS-CoV-2
9.
BMC Infect Dis ; 21(1): 544, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107889

RESUMEN

BACKGROUND: SARS-CoV-2 is a recently emerged pandemic coronavirus (CoV) capable of causing severe respiratory illness. However, a significant number of infected people present as asymptomatic or pauci-symptomatic. In this prospective assessment of at-risk healthcare workers (HCWs) we seek to determine whether pre-existing antibody or T cell responses to previous seasonal human coronavirus (HCoV) infections affect immunological or clinical responses to SARS-CoV-2 infection or vaccination. METHODS: A cohort of 300 healthcare workers, confirmed negative for SARS-CoV-2 exposure upon study entry, will be followed for up to 1 year with monthly serology analysis of IgM and IgG antibodies against the spike proteins of SARS-CoV-2 and the four major seasonal human coronavirus - HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63. Participants will complete monthly questionnaires that ask about Coronavirus Disease 2019 (COVID-19) exposure risks, and a standardized, validated symptom questionnaire (scoring viral respiratory disease symptoms, intensity and severity) at least twice monthly and any day when any symptoms manifest. SARS-CoV-2 PCR testing will be performed any time participants develop symptoms consistent with COVID-19. For those individuals that seroconvert and/or test positive by SARS-CoV-2 PCR, or receive the SARS-CoV-2 vaccine, additional studies of T cell activation and cytokine production in response to SARS-CoV-2 peptide pools and analysis of Natural Killer cell numbers and function will be conducted on that participant's cryopreserved baseline peripheral blood mononuclear cells (PBMCs). Following the first year of this study we will further analyze those participants having tested positive for COVID-19, and/or having received an authorized/licensed SARS-CoV-2 vaccine, quarterly (year 2) and semi-annually (years 3 and 4) to investigate immune response longevity. DISCUSSION: This study will determine the frequency of asymptomatic and pauci-symptomatic SARS-CoV-2 infection in a cohort of at-risk healthcare workers. Baseline and longitudinal assays will determine the frequency and magnitude of anti-spike glycoprotein antibodies to the seasonal HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, and may inform whether pre-existing antibodies to these human coronaviruses are associated with altered COVID-19 disease course. Finally, this study will evaluate whether pre-existing immune responses to seasonal HCoVs affect the magnitude and duration of antibody and T cell responses to SARS-CoV-2 vaccination, adjusting for demographic covariates.


Asunto(s)
COVID-19/inmunología , Personal de Salud/estadística & datos numéricos , SARS-CoV-2/inmunología , Seroconversión , Vacunación/estadística & datos numéricos , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Infecciones Asintomáticas , Vacunas contra la COVID-19/inmunología , Coronavirus/inmunología , Reacciones Cruzadas , Humanos , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/inmunología
11.
bioRxiv ; 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32839773

RESUMEN

We report the first Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2RγcKO.NOD) for COVID-19 research. This mouse is reconstituted with human cord blood-derived, HLA-matched hematopoietic stem cells. It engrafts human epi/endothelial cells expressing the human ACE2 receptor for SARS-CoV-2 and TMPRSS2 serine protease co-localized on lung epithelia. HIS-DRAGA mice sustained SARS-CoV-2 infection, showing deteriorated clinical condition, replicating virus in the lungs, and human-like lung immunopathology including T-cell infiltrates, microthrombi and pulmonary sequelae. Among T-cell infiltrates, lung-resident (CD103+) CD8+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, indicating cytotoxic potential. Infected mice also developed antibodies against the SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathology and for testing the safety and efficacy of candidate vaccines and therapeutics.

12.
Haemophilia ; 27 Suppl 3: 28-36, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32608138

RESUMEN

The development of inhibitory antibodies to therapeutic factor VIII (FVIII) in haemophilia A (HA) patients is the major complication in treatment/prevention of haemorrhages. The reasons some HA patients develop inhibitors while others do not remain unclear. This review briefly summarizes our understanding of anti-FVIII immune responses, the roles of T cells, both effector and regulatory, and generally discusses the interplay between FVIII and the immune system, both in factor replacement therapy and gene therapy, with some comparisons to factor IX and haemophilia B therapies. Notably, we propose that the prevailing observed active tolerance to FVIII in both HA and non-HA individuals rests to greater or lesser extents on peripherally induced immune tolerance. We also propose that the immune systems of inhibitor-negative HA patients do not merely ignore therapeutic FVIII, but rather have immunologically assessed and actively tolerized the patients to exogenous FVIII. Induction of such peripheral immune tolerance may further be triggered in HA patients who failed to tolerize upon initial FVIII exposure by 'appropriate' stimulation of their immune system, eg by immune tolerance induction therapy via intensive FVIII therapy, by oral administration of FVIII, by cellular therapies or by gene therapy directed to immuno-tolerogenic sites such as the liver.


Asunto(s)
Hemofilia A , Hemostáticos , Factor VIII/genética , Terapia Genética , Hemofilia A/tratamiento farmacológico , Humanos , Tolerancia Inmunológica
13.
Front Immunol ; 11: 1219, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32595650

RESUMEN

Formation of pathological anti-FVIII antibodies, or "inhibitors," is the most serious complication of therapeutic FVIII infusions, affecting up to 1/3 of severe Hemophilia A (HA) patients. Inhibitor formation is a classical T-cell dependent adaptive immune response. As such, it requires help from the innate immune system. However, the roles of innate immune cells and mechanisms of inhibitor development vs. immune tolerance, achieved with or without Immune Tolerance Induction (ITI) therapy, are not well-understood. To address these questions, temporal transcriptomics profiling of FVIII-stimulated peripheral blood mononuclear cells (PBMCs) was carried out for HA subjects with and without a current or historic inhibitor using RNA-Seq. PBMCs were isolated from 40 subjects in the following groups: HA with an inhibitor that resolved either following ITI or spontaneously; HA with a current inhibitor; HA with no inhibitor history and non-HA controls. PBMCs were stimulated with 5 nM FVIII and RNA was isolated 4, 16, 24, and 48 h following stimulation. Time-series differential expression analysis was performed and distinct transcriptional signatures were identified for each group, providing clues as to cellular mechanisms leading to or accompanying their disparate anti-FVIII antibody responses. Subjects with a current inhibitor showed differential expression of 56 genes and a clustering analysis identified three major temporal profiles. Interestingly, gene ontology enrichments featured innate immune modulators, including NLRP3, TLR8, IL32, CLEC10A, and COLEC12. NLRP3 and TLR8 are associated with enhanced secretion of the pro-inflammatory cytokines IL-1ß and TNFα, while IL32, which has several isoforms, has been associated with both inflammatory and regulatory immune processes. RNA-Seq results were validated by RT-qPCR, ELISAs, multiplex cytokine analysis, and flow cytometry. The inflammatory status of HA patients suffering from an ongoing inhibitor includes up-regulated innate immune modulators, which may act as ongoing danger signals that influence the responses to, and eventual outcomes of, ITI therapy.


Asunto(s)
Factor VIII/inmunología , Factor VIII/uso terapéutico , Hemofilia A/tratamiento farmacológico , Tolerancia Inmunológica/inmunología , Inmunidad Innata/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/inmunología , Autoanticuerpos/inmunología , Niño , Preescolar , Femenino , Hemofilia A/inmunología , Humanos , Leucocitos Mononucleares/inmunología , Masculino , Persona de Mediana Edad , Transcriptoma , Adulto Joven
14.
Hum Vaccin Immunother ; 16(9): 2222-2237, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129705

RESUMEN

We have engineered a Human Immune System (HIS)-reconstituted mouse strain (DRAGA mouse: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD) in which the murine immune system has been replaced by a long-term, functional HIS via infusion of CD34+ hematopoietic stem cells (HSC) from cord blood. Herein, we report that the DRAGA mice can sustain inducible and transmissible H1N1 and H3N2 influenza A viral (IAV) infections. DRAGA female mice were significantly more resilient than the males to the H3N2/Aichi infection, but not to H3N2/Hong Kong, H3N2/Victoria, or H1N1/PR8 sub-lethal infections. Consistently associated with large pulmonary hemorrhagic areas, both human and murine Factor 8 mRNA transcripts were undetectable in the damaged lung tissues but not in livers of DRAGA mice advancing to severe H1N1/PR8 infection. Infected DRAGA mice mounted a neutralizing anti-viral antibody response and developed lung-resident CD103 T cells. These results indicate that the DRAGA mouse model for IAV infections can more closely approximate the human lung pathology and anti-viral immune responses compared to non-HIS mice. This mouse model may also allow further investigations into gender-based resilience to IAV infections, and may potentially be used to evaluate the efficacy of IAV vaccine regimens for humans.


Asunto(s)
Modelos Animales de Enfermedad , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Femenino , Antígeno HLA-A2/genética , Antígenos HLA-C , Antígeno HLA-DR4 , Proteínas de Homeodominio , Hong Kong , Humanos , Subtipo H3N2 del Virus de la Influenza A , Pulmón , Ratones , Ratones Endogámicos NOD
16.
Front Immunol ; 10: 3078, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32010137

RESUMEN

Therapeutic treatment of bleeds with FVIII can lead to an antibody response that effectively inhibits its function. Herein, we review the factors that contribute to this immunogenicity and possible ways to overcome it.


Asunto(s)
Inhibidores de Factor de Coagulación Sanguínea/inmunología , Factor VIII/efectos adversos , Hemofilia A/inmunología , Tolerancia Inmunológica , Isoanticuerpos/inmunología , Animales , Factor VIII/uso terapéutico , Hemofilia A/sangre , Hemofilia A/complicaciones , Hemofilia A/tratamiento farmacológico , Humanos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Insuficiencia del Tratamiento
17.
Front Immunol ; 10: 2991, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998296

RESUMEN

Development of neutralizing antibodies against biotherapeutic agents administered to prevent or treat various clinical conditions is a longstanding and growing problem faced by patients, medical providers and pharmaceutical companies. The hemophilia A community has deep experience with attempting to manage such deleterious immune responses, as the lifesaving protein drug factor VIII (FVIII) has been in use for decades. Hemophilia A is a bleeding disorder caused by genetic mutations that result in absent or dysfunctional FVIII. Prophylactic treatment consists of regular intravenous FVIII infusions. Unfortunately, 1/4 to 1/3 of patients develop neutralizing anti-FVIII antibodies, referred to clinically as "inhibitors," which result in a serious bleeding diathesis. Until recently, the only therapeutic option for these patients was "Immune Tolerance Induction," consisting of intensive FVIII administration, which is extraordinarily expensive and fails in ~30% of cases. There has been tremendous recent progress in developing novel potential clinical alternatives for the treatment of hemophilia A, ranging from encouraging results of gene therapy trials, to use of other hemostatic agents (either promoting coagulation or slowing down anti-coagulant or fibrinolytic pathways) to "bypass" the need for FVIII or supplement FVIII replacement therapy. Although these approaches are promising, there is widespread agreement that preventing or reversing inhibitors remains a high priority. Risk profiles of novel therapies are still unknown or incomplete, and FVIII will likely continue to be considered the optimal hemostatic agent to support surgery and manage trauma, or to combine with other therapies. We describe here recent exciting studies, most still pre-clinical, that address FVIII immunogenicity and suggest novel interventions to prevent or reverse inhibitor development. Studies of FVIII uptake, processing and presentation on antigen-presenting cells, epitope mapping, and the roles of complement, heme, von Willebrand factor, glycans, and the microbiome in FVIII immunogenicity are elucidating mechanisms of primary and secondary immune responses and suggesting additional novel targets. Promising tolerogenic therapies include development of FVIII-Fc fusion proteins, nanoparticle-based therapies, oral tolerance, and engineering of regulatory or cytotoxic T cells to render them FVIII-specific. Importantly, these studies are highly applicable to other scenarios where establishing immune tolerance to a defined antigen is a clinical priority.


Asunto(s)
Factor VIII/farmacología , Factor VIII/uso terapéutico , Animales , Anticuerpos Neutralizantes/inmunología , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Factor VIII/inmunología , Hemofilia A/tratamiento farmacológico , Hemofilia A/inmunología , Hemostáticos/inmunología , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Fragmentos Fc de Inmunoglobulinas/farmacología , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico
18.
PLoS One ; 13(11): e0206654, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30399156

RESUMEN

Accurate predictions of T-cell epitopes would be useful for designing vaccines, immunotherapies for cancer and autoimmune diseases, and improved protein therapies. The humoral immune response involves uptake of antigens by antigen presenting cells (APCs), APC processing and presentation of peptides on MHC class II (pMHCII), and T-cell receptor (TCR) recognition of pMHCII complexes. Most in silico methods predict only peptide-MHCII binding, resulting in significant over-prediction of CD4 T-cell epitopes. We present a method, ITCell, for prediction of T-cell epitopes within an input protein antigen sequence for given MHCII and TCR sequences. The method integrates information about three stages of the immune response pathway: antigen cleavage, MHCII presentation, and TCR recognition. First, antigen cleavage sites are predicted based on the cleavage profiles of cathepsins S, B, and H. Second, for each 12-mer peptide in the antigen sequence we predict whether it will bind to a given MHCII, based on the scores of modeled peptide-MHCII complexes. Third, we predict whether or not any of the top scoring peptide-MHCII complexes can bind to a given TCR, based on the scores of modeled ternary peptide-MHCII-TCR complexes and the distribution of predicted cleavage sites. Our benchmarks consist of epitope predictions generated by this algorithm, checked against 20 peptide-MHCII-TCR crystal structures, as well as epitope predictions for four peptide-MHCII-TCR complexes with known epitopes and TCR sequences but without crystal structures. ITCell successfully identified the correct epitopes as one of the 20 top scoring peptides for 22 of 24 benchmark cases. To validate the method using a clinically relevant application, we utilized five factor VIII-specific TCR sequences from hemophilia A subjects who developed an immune response to factor VIII replacement therapy. The known HLA-DR1-restricted factor VIII epitope was among the six top-scoring factor VIII peptides predicted by ITCall to bind HLA-DR1 and all five TCRs. Our integrative approach is more accurate than current single-stage epitope prediction algorithms applied to the same benchmarks. It is freely available as a web server (http://salilab.org/itcell).


Asunto(s)
Presentación de Antígeno , Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Modelos Inmunológicos , Receptores de Antígenos de Linfocitos T/inmunología , Algoritmos , Antígenos/metabolismo , Catepsinas/metabolismo , Simulación por Computador , Factor VIII/inmunología , Hemofilia A/inmunología , Hemofilia A/terapia , Humanos , Estructura Terciaria de Proteína
19.
Transfusion ; 58(5): 1171-1181, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29464723

RESUMEN

BACKGROUND: Kell is a glycoprotein expressed on red blood cells (RBCs). Its K and k variants contain either Met (K antigen) or Thr (k antigen) at Position 193, respectively. Development of anti-K after K-mismatched antigen exposure via blood transfusions or pregnancy can destroy RBCs, leading to hemolytic transfusion reactions and hemolytic disease of the fetus and newborn. The immunogenicity of overlapping 15-mer Kell peptides with M193 or T193 at every possible position was investigated previously. Interestingly, Peptide W179 to M193, with the polymorphic M193T residue at the peptide's C-terminus, was the most effective at stimulating CD4 T cells from a series of K-immunized women. STUDY DESIGN AND METHODS: This study investigates the basis for HLA restriction of anti-K immune responses. Major histocompatibility complex Class II (MHCII)-binding prediction algorithms and quantitative peptide-MHCII-binding assays were employed to determine the binding registers; anchor residues; and affinities of wild-type, truncated, and sequence-modified K and k peptides. Predictions were generated using Immune Epitope Database and ProPred algorithms. Competitive peptide-MHCII-binding assays utilized 12 recombinant HLA-DR proteins, K and k peptides, and high-affinity MHCII-restricted reference peptides. RESULTS: The peptide-MHCII-binding assays identified a unique K peptide-binding register (W179-S187) restricted to HLA-DRB1*11:01, in addition to partially overlapping binding registers that included the K/k M193T polymorphic site and that bound promiscuously to multiple HLA-DR proteins. CONCLUSION: Three partially overlapping MHCII-binding motifs for HLA-DRB1*11:01 result in high-avidity K-peptide binding, which may contribute to HLA-DR11-restricted immunogenicity associated with the K allele.


Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos de Superficie/inmunología , Subtipos Serológicos HLA-DR/inmunología , Antígenos Bacterianos/metabolismo , Antígenos de Superficie/metabolismo , Sitios de Unión , Antígenos de Grupos Sanguíneos/inmunología , Cadenas HLA-DRB1 , Antígenos de Histocompatibilidad Clase II , Humanos , Unión Proteica
20.
Blood Adv ; 2(4): 309-322, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29444872

RESUMEN

Factor VIII (FVIII)-neutralizing antibodies (inhibitors) are a serious complication in hemophilia A (HA). The peptide FVIII2194-2213 contains an immunodominant HLA-DRA*01-DRB1*01:01 (DRB1*01:01)-restricted epitope recognized by CD4+ T-effector cells from HA subjects. The aim of this study was to identify amino acid substitutions to deimmunize this epitope while retaining procoagulant function and expression levels comparable to those of wild-type (WT) FVIII proteins. The shortest DRB1*01:01-binding peptide was FVIII2194-2205, and residues important for affinity were identified as F2196, M2199, A2201, and S2204. T-cell proliferation experiments with Ala-substituted FVIII2194-2205 peptides identified F2196A as a substitution that abrogated proliferation of clones specific for the WT sequence. T-cell clones that were stimulated by recombinant WT-FVIII-C2 (rWT-FVIII-C2) protein did not proliferate when cultured with rFVIII-C2-F2196A, indicating the immunogenic peptide includes a naturally processed T-cell epitope. Additional amino acid substitutions at F2196 and M2199 were evaluated by peptide-MHC class II (MHCII)-binding assays, T-cell proliferation assays, epitope prediction algorithms, and sequence homologies. Six B-domain-deleted (BDD)-FVIII proteins with substitutions F2196A, F2196L, F2196K, M2199A, M2199W, or M2199R were produced. Proliferation of T-cell clones and polyclonal lines in response to rBDD-FVIII-F2196K and rBDD-FVIII-M2199A was reduced compared with responses to WT-BDD-FVIII. The BDD-FVIII-F2196K sequence modification appears to be the most promising sequence variant tested here, due to its effectiveness at eliminating DRB1*01:01-restricted immunogenicity, low potential immunogenicity in the context of other MHCII alleles, expression level comparable to WT-BDD-FVIII, and retained procoagulant activity. These results provide proof of principle for the design of less immunogenic FVIII proteins targeted to specific subsets of HA patients.


Asunto(s)
Epítopos de Linfocito T/genética , Factor VIII/inmunología , Epítopos Inmunodominantes , Sustitución de Aminoácidos , Proliferación Celular , Diseño de Fármacos , Genes MHC Clase II , Hemofilia A/tratamiento farmacológico , Humanos , Activación de Linfocitos , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...